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Abstract

An exact closed-form solution is developed for a damped single-degree-of-freedom oscillator contacting a unilateral stop

once per N cycles of external sinusoidal force. It also includes the effect of a bias force. This solution was obtained by using

two different displacement and velocity expressions for a two-region piecewise linear oscillator, continuity of displacement

and velocity at the boundary of the two regions, and periodicity conditions. Contact duration is assumed as known and

four simultaneous equations in four unknowns are solved exactly. The four unknowns are the amplitude of the sinusoidal

force, phase angle of the assumed first contact, entry velocity, and exit velocity of mass. The stability of motion is checked

using the closed-form expressions of elements of a 2� 2 stability governing matrix. These elements are obtained by

considering only first-order perturbations in periodic motion. Theoretical predictions based on exact solution agree with

previous results and with results obtained using a numerical simulation approach. The relationships are studied in detail

between input parameters (such as amplitude of external force, frequency of external force, bias force, gap, spring stiffness

and damping constants) and output parameters (such as contact duration, phase angle at contact, entry velocity, exit

velocity, maximum displacement and minimum displacement).

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the last few decades, a single-degree-of-freedom impact oscillator contacting stops has been widely used
as a first approximation to study the behavior of machines used in pile driving, compacting, crushing, riveting,
rock drilling, impact printing, marine structures and in contacts between baffle plates and tubes in heat
exchangers used in the power, chemical and nuclear industries [1–4]. Interested readers should refer to these
articles for additional information. The author is aware that extremely complex motions exist in these systems
and extensive research has been undertaken using approximate methods such as describing functions,
harmonic and incremental harmonic balance, stochastic linearization, approach of smoothening functions,
finite elements in time, numerical simulation and mapping dynamics, and physical experiments. However, only
articles related to closed-form solutions of periodic motions where the mass contacts the elastic stop once per
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A1 displacement amplitude, mm, F/
[(K1�MO2)+(C1O)

2)]1/2

A2 displacement amplitude, mm, F/
[(K1+K2�MO2)+{(C1+C2)O}

2]1/2

C1 viscous damping constant of primary
system, N s/mm

C2 viscous damping constant of stop, N s/
mm

d gap between mass and stop, mm
F amplitude of sinusoidal force, N

K1 stiffness of primary system, N/mm
K2 stiffness of stop, N/mm
M mass of primary system, kg
N integer number of cycles per contact
P2 stability matrix in region 2
P1 stability matrix in region 1
r1 frequency ratio (O/o1), non-dimensional
r2 frequency ratio (O/o2), non-dimensional
t time elapsed after the first contact, s
X1(t) absolute displacement of mass in region

1, mm
X1 absolute displacement of mass at time 1,

X1 ¼ X3 ¼ d, mm
X2(t) absolute displacement of mass in region

2, mm

X2 absolute displacement of mass at time 2,
equals d, mm

Xmax maximum displacement of mass M, mm
Xmin minimum displacement of mass M, mm
Y1(t) velocity of mass in region 1, mm/s
Y2(t) velocity of mass in region 2, mm/s
Yi velocity of mass at the ith contact, i ¼ 1,

2 and 3 and Y3 ¼ Y1, mm
DY1 small perturbation in value Y1 at first

contact
a1 phase angle between the displacement

and force at the first contact, rad
Da1 small perturbation in a1 at first contact,

rad
ac contact phase, rad
x1 fraction of critical viscous damping, C1/

2Mo1

x2 fraction of critical viscous damping,
(C1+C2)/2Mo2

o1 undamped natural circular frequency in
region one, rad/s

o2 undamped natural circular frequency in
region two, rad/s

O circular frequency of excitation, rad
d=dt derivative with respect to time, t, super-

script
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N cycles of the external force are referenced in this work. These motions are important as stability regions can
be quite large. When system parameters are outside stable regions of (1, N) motions, majority of complex
periodic or chaotic motions occur.

Results obtained in this case need a solution of the resulting transcendental equations in unknown time
durations between contacts and are solved numerically using a time consuming iteration approach. For this
reason very few stability charts of such motions are available. Masri studied a simple oscillator and a beam
contacting an elastic stop and solved the resulting nonlinear equations numerically [5]. A transcendental
equation was obtained by Metallidis and Natsiavas [6] for a rod and a rigid mass contacting elastic stop under
a sinusoidal and a bias force. Metallidis also solved these equations numerically. Ji also studied periodic
motion of oscillator with saturation characteristics and developed nonlinear equations which were solved
numerically [7,8]. Chicurel–Uziel studied mass oscillating against an elastic wall using periodizer function and
used a symbolic mathematics package to obtain periodic motions [9]. Bapat studied an oscillator contacting a
unilateral elastic stop once per cycle of applied force and developed four linear equations by assuming
contact duration as a known. The resulting equations were solved using a digital computer [10]. However,
explicit expressions of a stability matrix were not developed [10]. Instead the stability of motions was
investigated using a numerical simulation approach using zero initial conditions. Obviously, those results were
not conclusive.

Here, an approach is developed to obtain an exact closed-form solution for an oscillator contacting a single
stop once per N cycles of an external sinusoidal force, and with a constant bias force. Additionally, explicit
expressions of elements of stability matrix are also presented. Often pre-compression, dc, and bias force are
used to prevent impacts. However, during intense vibration the mass separates from the stop and impacts do
occur. Theory developed here can be used to study such systems using d ¼ �dc. Theoretical predictions are
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checked with results obtained using a numerical simulation approach and with previous results, and they
agree. The interrelationships are investigated in detail between input parameters such as amplitude and
frequency of sinusoidal force, bias force, gaps, spring stiffnesses, damping constants, and output parameters
such as contact duration, phase angle at contact, entry velocity, exit velocity, and maximum/minimum
displacement.
2. Theory

A model of an oscillator contacting an elastic stop at distance d is shown in Fig. 1(a) and it consists of a
primary mass M, spring with stiffness K1, and a damper with damping constant C1. The system is excited by
an external sinusoidal force FsinOt and a bias force Fb. The elastic stop consists of a spring with stiffness K2

and damper with damping constant C2, and is located at distance d when F ¼ Fb ¼ 0. Negative or positive bias
force shifts the static equilibrium position and, respectively, increases or reduces the gap d by Fb/K1. The
piecewise linear variation in spring and damping force is shown in Fig. 1(b) and (c), respectively. Fig. 2(a)
shows one contact per three cycles motion and the important parameters such as phase angle of the assumed
first contact, a1, phase duration of joint motion, ac, and velocities Y1, and Y2 of M as it enters and leaves
region 2. The phase angle a1 is angle Ot between the displacement and the force at which the assumed first
contact occurs, and the time is measured from this reference. The mass exits region 2 after time ac/O with
velocity Y2. The phase plot of this motion is shown in Fig. 2(b). The contact phase ac is assumed as a known.
Equations relating four unknowns Y1, Y2, A1cos a1 and A1sin a1 are developed using exact solution of
displacement and velocity between contacts and using continuity and periodicity conditions of motion. A1 is
the steady-state amplitude of oscillator only under external force FsinOt. It is assumed that stable periodic one
contact per N cycles, i.e. (1, N), motion is established. Equations are developed and solved in a closed form in
what follows.
FsinΩt+Fb

K2

d

M

C2

K1+ K2 C1+C2

C1

K1

C1

K(x)

K1

X (t)d

C (x)

X (t)d

Fig. 1. (a) A single-degree-of freedom oscillator with elastic amplitude constraint under sinusoidal and bias force. The variations in spring

force and damping force are shown in (b) and (c), respectively.
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Region 2
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3

d

d

Contact duration

Time t

X2,Y2,X1

Y1

X3 = X1

Y3 = Y1

X (t)

 d

Y (t)

Region 2Region 1

�1

�c �2 = �1 + �c
F (t) �3 = �1+ 2π N 

X (t)

Fig. 2. (a) Displacement and force trace of one contact per three cycles, (1, 3) motion, with important parameters and (b) corresponding

phase plane plot.
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The differential equations of the motion of M between contacts in region 1 is given as

Md2X=d2tþ C1 dX=dtþ K1X ¼ F sinðOtÞ þ F b; X ðtÞpd (1)

and in region 2 as

M d2X=d2tþ ðC1 þ C2ÞdX=dtþ ðK1 þ K2ÞX ¼ F sinðOtÞ þ K2d þ Fb; X ðtÞXd, (2)

where X is the absolute displacement of M and is measured from the un-stretched spring position. When the
mass is in region 2, it can be shown that between the assumed first and the second contact the displacement,
X2(t), and velocity, Y2(t), is given as

X 2ðtÞ ¼ expð�z2o2ðOt� a1Þ=OÞ½a2 sin fZ2o2ðOt� a1Þ=Og þ b2 cos fZ2o2ðOt� a1Þ=Og�

þ A2 sinðOt� c2Þ þ F2; a1pOtpa1 þ ac, (3)

Y 2ðtÞ ¼ expð�z2o2ðOt� a1Þ=OÞ½a2ðo2fZ2 cosðZ2o2ðOt� a1Þ=OÞ � z2 sinðZ2o2ðOt� a1Þ=OÞg

þ b2ðo2f�z2 cosðZ2o2ðOt� a1Þ=OÞ � Z2 sinðZ2o2ðOt� a1Þ=Og� þ A2O cosðOt� c2Þ,

a1pOtpa1 þ ac. (4)

Expressions of all undefined variables in all equations are given in Appendix A. When mass is in region 1,
displacement X1(t) and velocity Y1(t) between the second and the third contact is given as

X 1ðtÞ ¼ expð�z1o1ðOt� a1 � acÞ=OÞ½a1 sinfZ1o1ðOt� a1 � acÞ=Og þ b1 cos fZ1o1ðOt� a1 � acÞ=Og�

þ A1 sin ðOt� c1Þ þ F 1; a1 þ acpOtp2pN þ a1, (5)

Y 1ðtÞ ¼ expð�z1o1ðOt� a1 � acÞ=OÞ½a1fo1fZ1 cos ðZ1o1ðOt� a1 � acÞ=OÞ

� z1 sin ðZ1o1ðOt� a1 � acÞ=OÞg þ b1ðo1f�z1 cos ðZ1o1ðOt� a1 � acÞ=OÞ

� Z1 sin ðZ1o1ðOt� a1 � acÞ=Og� þ A1O cos ðOt� c1Þ; a1 þ acpOtp2pN þ a1. (6)

As shown in Fig. 2(a), the displacement X2(t ¼ a2/O) ¼ d and can be obtained from Eq. (3) after algebraic
simplification as

d ¼ X 2 ¼ C12a2 þ C22b2 þ A2 sinða1 þ ac � c2Þ þ F 2. (7)

Similarly, velocity Y2 at the second contact can be obtained by substituting Ot ¼ a1+ac in Eq. (4) and is
given as

Y 2 ¼ C31a1 þ C42b1 þ A2O cosða1 þ ac � c2Þ. (8)

The displacement and velocity of M at point 3 is obtained by substituting Ot ¼ (2pN+a1) in Eqs. (5) and
(6), respectively. After simplification it can be written as

d ¼ X 3 ¼ C11a1 þ C21b1 þ A1 sinð2pN þ a1 � c1Þ þ F1, (9)

Y 3 ¼ Y 1 ¼ C31a1 þ C41b1 þ A1O sinð2pN þ a1 � c1Þ. (10)

A careful examination of Eqs. (7)–(10) indicates that there are four simultaneous equations in six unknowns
Y1, Y2, A1cos a1, A1sin a1, A2cos a1 and A2sin a1. All other variables can be calculated, as ac is assumed to be
known. However, the amplitude A2 can be calculated in terms of A1 as

A2 ¼ lA1,

where

l ¼ ½ðK1 �MO2Þ
2
þ ðC1OÞ

2
�1=2=½ðK1 þ K2 �MO2Þ

2
þ ððC1 þ C2ÞOÞ

2
�1=2. (11)

Substituting A2 in terms of A1 in Eqs. (7) and (8) and Eqs. (9) and (10) results in four equations in four
unknowns Y1, Y2, A1sin a1, and A1cos a1. After a lengthy algebraic simplification it can be shown that these
four equations can be expressed as

W1R1þW2R2 ¼ B1, (12a)
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W3R1þW4R2 ¼ B2. (12b)

Exact closed-form solution of Eq. (12a, b) can be obtained as

½R2� ¼ ½A1 cos a1;A1 sin a1� ¼ ½W1�1W2�1 �W3�1W4�1��1½W1�1B1�W3�1B2�, (13)

where

W1�1 ¼ ðZ2o2=C12Þ
1 0

C32=Z2o2 �C12=Z2o2

" #
,

W3�1 ¼ ðZ1o1=C11Þ
C31=Z1o1 �C11=Z1o1

1 0

" #
. (14)

Eq. (13) can be solved to obtain amplitude A1, phase angle a1 and external force F as

A1 ¼ ½ðA1 sin a1Þ
2
þ ðA1 cos a1Þ

2
�1=2; a1 ¼ arctan½A1 sin a1=A1 cos a1� (15a)

and

F ¼ A1½ðK1 �MO2Þ
2
þ ðC1OÞ

2
�1=2. (15b)

The velocities Y1 and Y2 can be obtained by solving Eq. (12a) as

½R1� ¼ ½Y 1;Y 2�
T ¼W1�1½B1�W2R2�. (16)

Eqs. (16) and (17) are the closed-form solutions of A1, a1, F, Y1 and Y2.
For the given system parameters M, K1, K2, C1, C2, O and assumed contact duration ac, Cij, i ¼ 1–4, j ¼ 1, 2

and W1, W2, W3 and W4 remain the same and do not depend on d and Fb. However, a careful examination of
the elements of B1 and B2 given by Eq. (A.4) indicates that B1 and B2 are proportional to the gap parameter
(dK1�Fb). Using these two facts in Eqs. (12), (15) and (16) indicates that [R2] ¼ [A1cos a1, A1sin a1]

T and
[R1] ¼ [Y1, Y2]

T are proportional to the gap parameter (dK1�Fb). When d ¼ Fb ¼ 0 or K1d�Fb ¼ 0 and the
just mentioned proportional relationship results in B1 ¼ B2 ¼ 0. This leads to a trivial solution
Y1 ¼ Y2 ¼ A1 ¼ A2 ¼ F ¼ 0. The theory presented in this manuscript is not applicable for this special case.
The case when d ¼ 0 is quite interesting as contacts occur for all values of O when F 6¼0. However, intuitively,
the responses of a system with a zero gap and that with a very small gap may be quite close. Theoretical results
obtained using a very small gap and those obtained using zero gap in a digital simulation approach are close,
and this confirms the above conjecture. These results are presented in Section 3.

Eqs. (13), (14) and (16) indicate that when C11, C12 and W1�1W2�W3�1W4 are very small, matrices W1,
W3 and [W1�1W2�W3�1W4]�1 become nearly singular. In such instances it is advisable to further investigate
using a digital simulation approach to confirm theoretical predictions. However, difficulties during inversion
process can be predicted and avoided by checking the values of C12, C11 and W1�1W2�W3�1W4. This fact is
used to indicate a problem and to avoid overflow in the computer program. Additionally, if an exceedingly
large force is predicted then it is advisable to check the results using a digital simulation approach. However,
such situations are expected to be rare and are not encountered in this investigation.

There are other physical requirements for motions to be viable, and one such requirement is that the
amplitude A1+Fb/K1 must be greater than the gap d

A1 þ Fb=K14d. (17)

Eq. (17) controls the frequency range of vibro-contact motion. Additionally, displacement must remain in
regions 2 between the time interval 0–t2 and in region 1 between the time interval t2–t3, respectively:

X 2ðtÞ4d; 0ptpt2; X 1ðtÞod; t2ptpt3. (18a, b)

Also, the velocity of mass M as it enters region 2 must be positive, and as it leaves region 2 must be negative

Y 1 ¼ Y 340; Y 2o0. (19)

Solutions not satisfying Eqs. (17)–(19) are rejected. However, violation of the displacement conditions
Eqs. (18a, b) indicates that more than one contact occurs within the considered time interval. This fact can be
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used to obtain end point of the assumed type of periodic motion. A majority of complex motions occurs when
parameters are outside the stability regions of (1, N) motions. However, overlapping of (1, N) motions and
other complex motions may occur in small regions, and some examples are presented in Section 3.

Periodic motions are further classified as stable and unstable. The stability of motion is investigated by
perturbing motion. The elements of the 2� 2 stability matrix P2, are obtained by substituting a1+Da1,
Y1+DY1, a2+Da2 and Y2+DY2 for a1, Y1, a2 and Y2 in Eqs. (7)–(10) and in expressions of a2, b2, C12, C22,
C32, C42 given in Appendix A. Expanding all terms of these equations and neglecting second-order terms, the
relations between the above-mentioned perturbations can be expressed as [10]

Da1
DY 2

" #
¼

P2ð1; 1Þ P2ð1; 2Þ

P2ð2; 1Þ P2ð2; 2Þ

" #
Da1
DY 1

" #
. (20)

Following similar procedure, the perturbation matrix P1 can be obtained when mass M is in region 1 during
the time interval t2ptpt3. P1 relates Da3 and DY3 to Da2 and DY2 and is given as

Da2
DY 2

" #
¼

P1ð1; 1Þ P1ð1; 2Þ

P1ð2; 1Þ P1ð2; 2Þ

" #
Da2
DY 2

" #
. (21)

The 2� 2 total stability matrix PT which relates perturbation at contact 3 to those at contact 1 is expressed
as

PT ¼ P1P2. (22)

Periodic motion is asymptotically stable if and only if all eigenvalues of matrix PT lie within the unit circle in
the complex plane. Two eigenvalues of PT are given as

l1;2 ¼ 0:5½PT ð1; 1Þ þ PT ð2; 2Þ� � 0:5½fPT ð1; 1Þ þ PT ð2; 2Þg
2 � 4fPT ð1; 1ÞPT ð2; 2Þ

� PT ð1; 2ÞPT ð2; 1Þg�
2. (23)

For stability

absðl1Þo1 and absðl2Þo1. (24)

A numerical simulation approach is also used to validate the theoretical results obtained using
Eqs. (13)–(16) and to investigate other periodic and non-periodic motions. The numerical simulation
program is developed using a combined linear interpolation, bisection, and constant time step approaches.
The complete time history of motion is obtained using zero initial displacement X(0) ¼ 0 and velocity Y(0) ¼ 0
unless stated otherwise. The next contact instant t2 is obtained by iteratively solving Eqs. (7) or (9), and
computations are terminated when abs(X(t2)�d)p10�8. New initial conditions are obtained as X2 ¼ d and Y

given by Eqs. (4) or (6), and this process is continued for a long time. All computations are performed using a
double precision arithmetic to reduce round off errors in numerical calculations.

Theoretical predictions agree with previous theoretical results and also with results obtained using the
numerical simulation approach and are presented in Section 3. The interrelations between frequency and
amplitude of sinusoidal force, bias force, gap, two stiffnesses, contact duration, and damping constants and
important output parameters such as velocity at contact, maximum and minimum displacements, etc., are
studied and presented in what follows.

3. Results and discussion

Results are obtained using K1 ¼M ¼ d ¼ 1, C1 ¼ 0.01, C2 ¼ 0.1, K2 ¼ 25 and Fb ¼ 0 unless stated
otherwise. Theoretical results obtained using Eqs. (16) and (17) for (1, 1) motion with and without biased
force, (1, 2) motion at large force level near the upper end of the stability region at O ¼ 4.1, and (1, 4) motion
with a large contact duration at O ¼ 6 and F ¼ 40 are compared with results obtained using a numerical
simulation approach. These results are presented in Table 1 and they all concur. Small differences exist
between results presented in Table 1 as amplitude of force is assumed as a known in simulation approach and
contact duration ac is obtained as one of the outputs. However, in theoretical solution contact duration, ac is
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Table 1

A comparison of theoretical results with simulation results

Type of motion Parameters Exact solution Simulation results

Input Output Input Output

(1, 1) stable C1 ¼ 0.01 F 0.10002 0.1000

O ¼ 1.0 ac 0.4372 0.4372

a1 1.4598 1.4596

Xmax, Xmin 1.0440, �1.0565 1.0439, �1.0563

Y1, Y2 0.3634, �03569 0.3634, �0.3568

(1, 1) stable C1 ¼ 0.01 F 0.1000 0.1000

Bias force O ¼ 1.0 ac 0.5029 0.5033

Fb ¼ 0.5 a1 1.3766 1.3766

Xmax, Xmin 1.0387, �0.0533 1.0387, �0.5330

Y1, Y2 0.2679, �0.2619 0.2679, �0.2619

(1, 2) stable C1 ¼ 0.01 F 30.0028 30.0

O ¼ 4.1 ac 1.4454 1.4453

a1 3.9789 3.9788

Xmax, Xmin 1.6917, �3.3710 1.6913, �3.3704

Y1, Y2 7.1255, �7.0478 7.1254, �7.0479

(1, 4) stable C1 ¼ 0.01 F 40.0000 40.0

O ¼ 6 ac 6.4503654 6.4503654

a1 �1.6487 �1.6487

Xmax, Xmin 2.1088, �11.0954 2.1073, �11.0947

Y1, Y2 10.3973, �10.6512 10.3975, �10.6512

Please note that in the theoretical solution ac is assumed as an input and F is one of the outputs.

C.N. Bapat / Journal of Sound and Vibration 314 (2008) 803–820810
assumed as an input, and required force F is one of the outputs. This leads to small differences in inputs and
outputs as shown in Table 1. Displacement and force traces of these motions and corresponding phase plane
plots are presented in Fig. 3(a)–(h). Results presented in row 1 of Table 1 also agree with results obtained
previously by solving nonlinear coupled equations [5] and four linear simultaneous equations [10] for a case
with d ¼ 1. The motion corresponding to row four is interesting as mass completes one cycle in region 2 with
large contact duration and then spends 3 cycles in region 1. A comparison of results shown in row 1 with
Fb ¼ 0 to those in row 2 with Fb ¼ 0.5 indicates that bias force Fb increases contact duration from 0.4372 to
0.5029, reduces peak to peak amplitudes from 1.0440, �1.057 to 1.0387, �0.0533 and lowers contact velocities
from 0.3634, �0.35687 to 0.2679 and �0.2619, respectively. This is clearly seen in Fig. 3(b) and (d).
Comparing Fig. 3(b) to (d) also indicates that phase orbit in Fig. 3(d) shrinks significantly and mean position
moves approximately Fb/K1 in the direction of bias force. Generally, bias force is used to avoid impacts and to
reduce displacement amplitude and contact velocities, and present results confirm this. However, bias force
also increases contact force and contact duration, and may have adverse effect on wear rate due to increase in
both parameters.

The important advantage of an exact solution as compared to the simulation approach is that exact results
are obtained nearly instantaneously. Exact approach requires fixed number of calculations. As opposed to
that, the simulation approach generally takes a long time to reach the steady-state motion due to slow
convergence of the periodic motion. The time history in the form of a phase plane plot obtained using a digital
simulation approach is shown in Fig. 4(a). It consists of an initial high amplitude response and eventual
steady-state response obtained after nearly 1000 contacts. An exact solution for this case, which takes
negligible computation time, is shown in Fig. 4(b) and is identical to the steady-state motion shown in
Fig. 4(a). This clearly shows the advantage of an exact approach. The effects of various parameters on periodic
motions are considered next.

The variation of amplitude of external force F as a function of contact duration ac and input frequency O
during (1, 1) motion is shown in Fig. 5(a) when 0oaco0.4 and in Fig. 5(b) when 0.4oaco1.0. This figure is
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Fig. 3. Displacement and force traces of periodic motions presented in Table 1: (a) (1, 1) motion without bias force; (c) (1, 1) motion with

bias force; (e) (1, 2) motion shown with F/10 and (g) (1, 4) motion with F/10. Corresponding phase plane plots are presented in (b), (d), (f)

and (h), respectively. Force F(t) (_ _ _) and displacement X(t) (——).

C.N. Bapat / Journal of Sound and Vibration 314 (2008) 803–820 811
obtained by increasing ac by 0.001 in the range of 0–1. Gaps in ac versus F curves indicate that for the ranges
of values of ac stable (1, 1) motion does not occur at the considered frequencies. As an example at O ¼ 0.8, (1,
1) motion occurs only when ac was within 0.001oaco0.065 and 0.460oaco0.522. This behavior is quite
common and indicates that stability diagrams drawn using O and ac may have holes in some regions. Fig. 5(a)
shows that at small contact duration, the required force increases very slowly with increasing contact duration.
However, F changes in a nonlinear fashion over a large range of contact duration ac. This response looks like
that of a hardening spring and is clearly seen in Fig. 5(b). Fig. 5(b) also indicates that if stable (1,1) motion can
occur at the same force level but at different excitation frequencies, then contact duration increases with the
excitation frequency. These curves in Fig. 5(b) become nearly vertical near the higher value of ac. Hence, cases
in this vertical range are used to check the validity of theoretical predictions and to rule out the possibility of
numerical underflow or overflow due to matrix inversion required in Eqs. (13) and (16). As an example at
O ¼ 1.1 and ac ¼ 0.737 and 0.738 the predicted values of F are 18.2193 and 22.5755, respectively. The slope
of this curve in this range is quite high and approximately equals 4346.2. Detailed investigation predicted that
(1, 1) motion is stable up to ac ¼ 0.738099 and corresponding F ¼ 23.1138. When FX23.1138, (1, 1) motion is
unstable. Hence, simulation results were obtained using F ¼ 22.5755, O ¼ 1.1 and special initial conditions,
X(0) ¼ 0 and Y(0) ¼ �25, which are close to periodic point of (1, 1) motion. This force is close to the higher
end of the force range but is within the stability zone. Simulation confirmed the theoretical predictions that
when F ¼ 22.5755 stable (1, 1) motion occurs. Simulation results were also obtained using value of
F ¼ 29.5304 at input frequency O ¼ 1.1. This point is outside the stability range of (1, 1) motion. Simulation
results confirmed the theoretical prediction, as at this force level three contacts/two cycles motion occurs.
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Fig. 4. (a) Numerical simulation results of initial transient (. . . . . . ), and final steady-state motion (BBBBBB), at F ¼ 80, O ¼ 2.0

with X(0) ¼ Y(0) ¼ 0 and (b) corresponding theoretical solution.

C.N. Bapat / Journal of Sound and Vibration 314 (2008) 803–820812
Simple stable periodic motions are generally preferred as they are easy to study and operation is
more uniform compared to other complex motions. The theory developed here can be used to obtain (1, N)
motions in practice using initial condition X(0) ¼ Xmin, where Y(0)E0 and the phase angle F is given by
sin(F) ¼ F(at Xmin)/F. The numerical value of F can be obtained by plotting one cycle of theoretical solution
and finding F at Xmin or using a computer program when X(t) reaches Xmin. This information can be used in
practice to obtain particular (1, N) motion by stretching system to Xmin and triggering system to start
operation at phase angle F. It is found that a stable system started with these conditions settles quite fast and
produces the required steady-state motion. The theoretical solution is used in finding these initial conditions
and can be helpful as domains of attraction regions are very complex. This approach can be especially useful
in overlapping stability regions [11]. These initial conditions are used in numerical simulations of motions in
what follows.

Behavior in the resonant region is studied in detail as it is quite important. Stability diagrams are obtained
by increasing O by 0.01 and ac by 0.001, respectively, in the range of O ¼ 0–2.5 and ac ¼ 0–1.5. Corresponding
stability diagrams of (1, N) motions for N ¼ 1–4 are presented in Fig. 6. Similar stability diagrams are
obtained at a high-frequency range of O ¼ 2.5–10 and ac ¼ 0.0–7.0 by increasing O by 0.05 and ac by 0.05. The
results are presented in Fig. 7. Figs. 6 and 7 indicate that stability regions are not continuous as (1, N) motions
occur only for certain ranges of ac as explained before. Actual stability regions are slightly larger than those
given in Figs. 6 and 7 as O and ac are increased in discrete increments. However, they are within the increments
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Fig. 5. Variation of input force F with contact duration ac and input frequency O for (a) 0oacp0.4 and (b) 0.4pacp1.0.
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in O and ac mentioned above. Corresponding to (1, 1) motion shown in Figs. 6(a) and 7(a), only one diagram
of F vs. O and ac vs. F, for the entire range of O ¼ 0–10 and ac ¼ 0–7, respectively, is shown in Fig. 8(a)
and (b). It is clear from Fig. 8(b) that F vs. ac curves are very steep near upper boundary of acE1.3 for high O.
In such cases force is underestimated due to high slope near the end. Careful examination of Figs. 6 and 7 also
shows that overlapping of stability regions occurs. This indicates that different motions can occur for the same
system parameters, and the outcome depends on the initial conditions. As an example, at O ¼ 10, d ¼ 1,
ac ¼ 1.3, N ¼ 1 and O ¼ 10, d ¼ 1, ac ¼ 6.54412, N ¼ 6 the theory predicted same F ¼ 1186.91, but different
entry and exit velocities of Y1 ¼ 74.8799, Y2 ¼ �74.5803 and Y1 ¼ 699.5128, Y2 ¼ �814.6481, respectively.
This shows that overlapping stable (1, N) motions can be predicted theoretically. Simulation results were
obtained using same O ¼ 10, d ¼ 1, F ¼ 1186.91 and using initial conditions X(0) ¼ �20.0, Y(0) ¼ 0, F ¼
1.58 and X(0) ¼ 0.0, Y(0) ¼ 0 and F ¼ 0, respectively. Simulation results confirmed theoretical predictions.
Velocities and contact durations were also identical to previously stated values obtained by theoretical
predictions. Additionally, the example of Table 1—row 4 corresponds to the point O ¼ 6, F ¼ 40.0 and
ac ¼ 6.4550365 and lies in the stability diagram of (1, 4) motion shown in Fig. 6(d). Generally, clearances in
many mechanical systems are very small, and systems are operated well above the first resonance. Hence,
investigation of these motions considered in Fig. 7 with large contact durations at high frequencies are
important as they may lead to fretting wear in vibro-contact systems.

The motions corresponding to smaller values of ac occur at small force levels and corresponding
displacements amplitudes are slightly more than the gap d. These motions are similar to motions with grazing
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Fig. 6. Stability regions of (a) (1, 1); (b) (1, 2); (c) (1, 3) and (d) (1, 4) motions plotted with O ¼ 0–2.5 and ac ¼ 0–1.5.

Fig. 7. Stability regions of (a) (1, 1); (b) (1, 2); (c) (1, 3) and (d) (1, 4) motions above primary resonance plotted with O ¼ 2.0–10 and

ac ¼ 0–7.5.
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contacts [12,13]. A careful examination of all stability diagrams shown in Figs. 6 and 7 clearly show that
stability regions of different (1, N) motions also overlap in this range. It is found that at the same force level,
different (1, N) motions can occur with differing contact durations and in such cases the type of actual motion
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Fig. 8. The variation of (a) F vs. ac and (b) F vs. O. Corresponding stability diagrams of (1, 1) stability regions for ac vs. O are shown in

Figs. 6(a) and 7(a).

Fig. 9. Phase planes of overlapping of (1, N) regions at: (a) (1, 1) motion, X(0) ¼ �1, Y(0) ¼ 0, f ¼ 4.95 and (b) (1, 4) motion, X(0) ¼ �1,

Y(0) ¼ 0, f ¼ 3.26 at F ¼ 0.20699 and O ¼ 0.9. The presented results are obtained using simulation approach and they agree with

theoretical results which are not shown.
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depends on initial conditions. As an example, (1, 1) and (1, 4) motions overlap at O ¼ 0.9 when F ¼ 0.20699.
Results are obtained using a digital simulation approach using appropriate initial conditions, and are shown in
Fig. 9(a) and (b). These results agree with theoretical predictions. Overlapping of more than two (1, N) type
motions is also observed at other frequencies and force levels. To reduce propagation of errors during these
weak interactions, the accuracy is increased during digital simulation by using condition abs(X(t)�d)p10�11

instead of abs(X(t)�d)p10�9. It is found that the system takes a long time to settle as contacts occur once per
few cycles and the advantage of exact solution becomes quite clear. Very complex behavior of systems during
grazing regions can be partially explained by overlapping of simple periodic motions as well as overlapping of
simple motions with other complex motions. Simulation also indicates that settling times of grazing systems
can be quite long. These observations may be important for experimental research of grazing motions since
precisely controlling the amplitude of force and frequency is not an easy task. This partially explains the
nonobservance of periodic vibro-contact motions in grazing regions.

Overlapping of (1, N) motions with other complex motions also occurs and two such examples are
presented. When F ¼ 1.2 and O ¼ 0.45 (1, 1) motion overlaps two contacts per cycle, i.e. (2, 1) motion, and is
shown in Fig. 10(a)–(d). Also when F ¼ 22.57 and O ¼ 1.1 (1, 1) motion overlaps 3 contacts per 2 cycles
motion and these are shown in Fig. 10(e)–(h). These results are obtained using numerical approach with
proper initial conditions. The theoretical predictions are identical to (1, 1) motions shown in Fig. 10(a) and (e).

Many times an elastic stop is introduced to limit displacement and velocity of vibrating systems. The effects
of an elastic stop located at distance d ¼ 1 on ac, 2p�ac, Xmax/A1, Xmin/A1, Y1/A1O and Y2/A1O is
investigated. Results are obtained theoretically for stable (1, 1) motion using Eqs. (13)–(15). Contact duration
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Fig. 10. Displacement and force traces and phase plane plots of overlapping of (1, 1) and (3, 1) motions at O ¼ 0.45, F ¼ 1.2 are shown in

(a), (c), (b) and (d), respectively. Similar plots of overlapping of (1, 1) and (3, 2) motions at O ¼ 1.1 and F ¼ 22.5655 are shown in (e), (g),

(f) and (h). These results are obtained using a simulation approach with initial conditions (a) X(0) ¼ �1.8, Y(0) ¼ 0, f ¼ 1.689; (c)

X(0) ¼ �1.0, Y(0) ¼ 0, f ¼ 0; (e) X(0) ¼ �18, Y(0) ¼ 0, f ¼ 3.62; and (g) X(0) ¼ 0, Y(0) ¼ 0, f ¼ 0. Theoretical (1, 1) motions are

exactly identical to those shown in (a) and (e).
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ac is increased very slowly and results are accepted when 0.999pFp1.001 and are shown in Figs. 11(a), (c)
and (e). Simulation results are obtained using F ¼ 1.0, X(0) ¼ Y(0) ¼ 0 and are presented in Figs. 11(b), (d)
and (f). Theoretical and simulation results agree with each other at all frequencies where (1, 1) motion occurs.
In this case many other types of complex motions occur, especially below O ¼ 0.7, and are present in the
simulation results. These figures also show that peaks of velocity and displacement occur at OE0.21, 0.41,
0.64, and 1.4. All values of non-dimensional variables above one represent amplification and below one
represent attenuation. It can be seen that amplitude and velocity attenuation are achieved in the range around
resonance of O ¼ 0.63–1.2 and outside this range amplification occurs. The minimum value of Xmax/A1 and
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Fig. 11. Variation of ac, 2p�ac, Xmax/A1, Xmin/A1, Y1/A1O and Y2/A1O with O obtained using theory and simulation approach are

presented in (a), (c), (e) and (b), (d), (f), respectively.
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Xmin/A1 occur at O ¼ 1 and these values increase more rapidly above one than below one and reach a
maximum of approximately 4.5 at OE1.41. Contacts do not occur beyond OE1.41.

The conjecture that theoretical results obtained using a very small gap and results obtained using a simulation
approach with a zero gap may be quite close to each other is further investigated in what follows. Theoretical results
of (1, N) motions, N ¼ 1, 2 and 3, are obtained using d ¼ 0.001 and compared with those obtained using a simulation
approach with d ¼ 0.0. Other values of parameters, C1 ¼ 0.2, C2 ¼ 0.0 and K2 ¼ 4 are chosen from Ref. [14] so that
present results can be compared with previous results obtained using finite elements in time [14]. Theoretical results
are obtained by increasing the contact duration very slowly, and results are accepted only when 0.999pFp1.001 and
are presented in Fig. 12(a) and (c). Simulation results are presented in Fig. 12(b) and (d). The present results agree
amongst themselves and with those given in Fig. 2 of Ref. [14]. The system has local displacement peaks, during (1, 1),
(1, 2) and (1, 3) motions, at OE1.41, 2.75 and 4.2, respectively. This behavior agrees with previous results [14]. It also
confirms the above conjecture that if (1, N) motions occur then the differences between the results of a system with
zero gap and those obtained theoretically using a very small gap will be minimum.

The results obtained indicate that contact duration decreases when spring stiffness increases and effect of
damping constant C2 is quite small [10]. However, positive bias force increases the contract duration. The
velocity ratio also decreases with K2; however, the effect of C2 is more pronounced as the energy absorbed
increases predominantly with C2. This indicates that for a very large value of K2 and with low damping C2 it is
reasonable to assume that contact interaction is close to instantaneous and can be modeled in the first
approximation by a constant coefficient of restitution [15,16].
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Fig. 12. Theoretical predictions of variation of ac, 2pN�ac, Xmax and Xmin with O obtained using N ¼ 1, 2 and 3 are shown in (a) and (c).

Results obtained using simulation approach are shown in (b) and (d). System parameters are: F ¼ 1.0, C1 ¼ 0.2, C2 ¼ 0.0, K2 ¼ 4 and

d ¼ 0.001.
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4. Conclusions

An exact theoretical approach is presented to study stable periodic one contact per N cycles of external force
motion of a damped single-degree-of-freedom oscillator with piecewise linear variation in stiffness and
damping properties. Contact duration is assumed as a known, and closed-form expressions of amplitude of the
sinusoidal force, phase angle at impact, velocities at entry and exit are obtained. The stability of motion is
studied by calculating eigenvalues of the 2� 2 stability governing matrix. This matrix is obtained by
perturbing periodic motion, and closed-form expressions for elements of the stability matrix are presented.
Theoretical predictions agree with previous results and with results obtained using a numerical simulation
approach. Relationships are studied in detail between input parameters, the amplitude and frequency of
external force, bias force, gap, stiffness, damping constant and output parameters, namely contact duration,
phase angle at contact, entry and exit velocities, maximum and minimum displacements.
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Appendix A

The undefined variables in the main text are given here. Variable required in Eqs. (3)–(6) are given as

o2 ¼ ½ðK1 þ K2Þ=MÞ�1=2; z2 ¼ ðC1 þ C2Þ=ð2Mo2Þ; Z2 ¼ ð1� z22Þ
1=2; r2 ¼ O=o2,

c2 ¼ tan�1½2z2r2=ð1� r22Þ�; A2 ¼ F=½ðK1 þ K2 �MO2Þ
2
þ ððC1 þ C2ÞOÞ

2
�1=2,

F2 ¼ ðK2d þ F bÞ=ðK1 þ K2Þ; a2 ¼ ð1=Z2Þ½ðY 1=o2Þ � A2r2 cosða1 � c2Þ þ z2b2�,

b2 ¼ d � A2 sinða1 � c2Þ � F2 (A.1)
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and

o1 ¼ ðK1=MÞ1=2; z1 ¼ C1=ð2Mo1Þ; Z1 ¼ ð1� z21Þ
1=2; r1 ¼ O=o1,

c1 ¼ tan�1½2z1r1=ð1� r21Þ�; A1 ¼ F=½ðK1 �MO2Þ
2
þ ðC1OÞ

2
�1=2; F 1 ¼ F b=K1,

a1 ¼ ð1=Z1Þ½ðY 2=o1Þ � A1r1 cosða1 þ ac � c1Þ þ z1b1�; b1 ¼ d � A1 sinða1 þ ac � c1Þ � F 1. (A.2)

Variable required in Eqs. (7)–(10) are given as

C12 ¼ expð�z2o2ac=OÞ sinðZ2o2ac=OÞ; C22 ¼ expð�z2o2ac=OÞ cosðZ2o2ac=OÞ,

C32 ¼ o2ðZ2C22 � z2C12Þ; C42 ¼ �o2ðz2C22 þ Z2C12Þ,

C11 ¼ expð�z1o1Z1=OÞ sinðZ1o1Z1=OÞ; C21 ¼ expð�z1o1Z1=OÞ cosðZ1o1Z1=OÞ,

C31 ¼ o1ðZ1C21 � z1C11Þ; C41 ¼ �o1ðz1C21 þ Z1C11Þ; Z1 ¼ ð2pN � a2Þ. (A.3)

The expressions of 2� 1 matrices R1, R2, B1, and B2 and other variables required in Eqs. (12)–(14) are
given as

R1 ¼ ½Y 1;Y 2�
T; R2 ¼ ½A1 cosða1Þ; A1 sinða1Þ�T,

B1ð1Þ ¼ ðdK1 � FbÞð1� C12z2=Z2 � C22Þ=ðK1 þ K2Þ,

B1ð2Þ ¼ ðdK1 � FbÞð�C32z2=Z2 � C42Þ=ðK1 þ K2Þ,

B2ð1Þ ¼ ðdK1 � FbÞð1� C11z1=Z1 � C21Þ=K1,

B2ð2Þ ¼ ðdK1� F bÞð�C31z1=Z1 � C41Þ=K1, (A.4)

W1ð1; 1Þ ¼ C12=Z2o2; W1ð1; 2Þ ¼ 0; W1ð2; 1Þ ¼ C32=Z2o2; W1ð2; 2Þ ¼ �1,

W2ð1; 1Þ ¼ V1 cos c2 � V2 sin c2; W2ð1; 2Þ ¼ V1 sin c2 þ V2 cos c2,

W2ð2; 1Þ ¼ V3 cos c2 � V4 sin c2; W2ð2; 2Þ ¼ V3 sin c2 þ V4 cos c2,

W3ð1; 1Þ ¼ 0; W3ð1; 2Þ ¼ C11=Z1o1; W3ð2; 1Þ ¼ �1; W3ð2; 2Þ ¼ C31=Z1o1,

W4ð1; 1Þ ¼ V5 cos c1 � V5 sin c1; W4ð1; 2Þ ¼ V5 sin c1 þ V5 cos c1,

W4ð2; 1Þ ¼ V7 cos c1 � V8 sinc1; W4ð2; 2Þ ¼ V7 sin c1 þ V8 cos c1 (A.5)

and

V1 ¼ lð�C12r2=Z2 þ sin acÞ; V2 ¼ lð�C12z2=Z2 � C22 þ cos acÞ,

V3 ¼ lð�C32r2=Z2 þ O cos acÞ; V4 ¼ lð�C32z2=Z2 � C42 � O sin acÞ,

V5 ¼ C11ð�r1 cos ac � z1 sin acÞ=Z1 � C21 sin ac,

V6 ¼ C11ðr1 sin ac � z1 cos acÞ=Z1 � C21 cos ac þ 1,

V7 ¼ C31ð�r1 cos ac � z1 sin acÞ=Z1 � C41 sin ac þ O,

V8 ¼ C31ðr1 sin ac � z1 cos acÞ=Z1 � C41 cos ac. (A.6)

Closed-form expressions of elements of the 2� 2 matrices P2 and P1 are, respectively, given as

P2ð1; 1Þ ¼ ½a2C32=Oþ b2C42=O� A2C12fr2 sinða1 � c2Þ � z2 cosða1 � c2Þg=Z2
þ A2C22 cosða1 � c2Þ�=U12,

P2ð1; 2Þ ¼ � C12=ðZ2o2U12Þ; P2ð2; 1Þ ¼ U22P2ð1; 1Þ þU32; P2ð2; 2Þ ¼ U22P2ð1; 2Þ þU42,

U12 ¼ C32a2=Oþ C42b2=Oþ A2 cosða1 þ ac � c2Þ,

U22 ¼ a2ðZ2C42 � z2C32Þ=r2 þ b2ð�Z2C32 � z2C42Þ=r2 � A2O sinða1 þ ac � c2Þ,

U32 ¼ � a2ðZ2C42 � z2C32Þ=r2 � b2ð�Z2C32 � z2C42Þ=r2 � A2C42 cosða1 � c2Þ

þ A2C32½r2 sinða1 � c2Þ � z2 cosða1 � c2Þ�=Z2; U42 ¼ C32=ðZ2o2Þ, (A.7)
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P1ð1; 1Þ ¼ ½a1C31=Oþ b1C41=O� A1C11fr1 sinða1 þ ac � c1Þ � z1 cosða1 þ ac � c1Þg=Z1
þ A1C21 cosða1 þ ac � c1Þ�=U11,

P1ð1; 2Þ ¼ � C11=ðZ1o1U11Þ; P1ð2; 1Þ ¼ U21P1ð1; 1Þ þU31; P1ð2; 2Þ ¼ U21P1ð1; 2Þ þU41,

U11 ¼ C31a1=Oþ C41b1=Oþ A1 cosða1 � c1Þ,

U21 ¼ a1ðZ1C41 � z1C31Þ=r1 þ b1ð�Z1C31 � z1C41Þ=r1 � A1O sinða1 � c1Þ,

U31 ¼ � a1ðZ1C41 � z1C31Þ=r1 � b1ð�Z1C31 � z1C41Þ=r1 � A1C31 cosða1 þ ac � c1Þ

þ A1C31½r1 sinða1 þ ac � c1Þ � z1 cosða1 þ ac � c1Þ�=Z1; U41 ¼ C31=ðZ1o1Þ. (A.8)
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